Veterinärmedizinische Universität Wien Forschungsinformationssystem VetDoc

Grafischer Link zur Startseite der Vetmeduni Vienna

Gewählte Publikation:

Open Access Logo

Publikationstyp: Zeitschriftenaufsatz
Dokumenttyp: Originalarbeit

Jahr: 2019

AutorInnen: Kaczensky, P; Khaliun, S; Payne, J; Boldgiv, B; Buuveibaatar, B; Walzer, C

Titel: Through the eye of a Gobi khulan - Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems.

Quelle: PLoS One. 2019; 14(6):e0217772



Autor/innen der Vetmeduni Vienna:

Kaczensky Petra
Walzer Christian

Beteiligte Vetmed-Organisationseinheiten
Forschungsinstitut für Wildtierkunde und Ökologie, Conservation Medicine


Dryad Logo Daten sind in Dryad abgelegt. | DataLink: https://doi.org/10.5061/dryad.8v3tq7c


Zugehörige(s) Projekt(e): Information im Pferdeschwanz - Isotopenanalyse zur Ökologie dreier Equiden


Abstract:
The Mongolian Gobi-Eastern Steppe Ecosystem is one of the largest remaining natural drylands and home to a unique assemblage of migratory ungulates. Connectivity and integrity of this ecosystem are at risk if increasing human activities are not carefully planned and regulated. The Gobi part supports the largest remaining population of the Asiatic wild ass (Equus hemionus; locally called "khulan"). Individual khulan roam over areas of thousands of square kilometers and the scale of their movements is among the largest described for terrestrial mammals, making them particularly difficult to monitor. Although GPS satellite telemetry makes it possible to track animals in near-real time and remote sensing provides environmental data at the landscape scale, remotely collected data also harbors the risk of missing important abiotic or biotic environmental variables or life history events. We tested the potential of animal born camera systems ("camera collars") to improve our understanding of the drivers and limitations of khulan movements. Deployment of a camera collar on an adult khulan mare resulted in 7,881 images over a one-year period. Over half of the images showed other khulan and 1,630 images showed enough of the collared khulan to classify the behaviour of the animals seen into several main categories. These khulan images provided us with: i) new insights into important life history events and grouping dynamics, ii) allowed us to calculate time budgets for many more animals than the collared khulan alone, and iii) provided us with a training dataset for calibrating data from accelerometer and tilt sensors in the collar. The images also allowed to document khulan behaviour near infrastructure and to obtain a day-time encounter rate between a specific khulan with semi-nomadic herders and their livestock. Lastly, the images allowed us to ground truth the availability of water by: i) confirming waterpoints predicted from other analyses, ii) detecting new waterpoints, and iii) compare precipitation records for rain and snow from landscape scale climate products with those documented by the camera collar. We discuss the added value of deploying camera collars on a subset of animals in remote, highly variable ecosystems for research and conservation.


© Veterinärmedizinische Universität Wien Hilfe und Downloads