Veterinärmedizinische Universität Wien Forschungsinformationssystem VetDoc

Gewählte Publikation:

Publikationstyp: Zeitschriftenaufsatz
Dokumenttyp: Originalarbeit

Jahr: 2016

AutorInnen: Schachner, A; Marek, A; Grafl, B; Hess, M

Titel: Detailed molecular analyses of the hexon loop-1 and fibers of fowl aviadenoviruses reveal new insights into the antigenic relationship and confirm that specific genotypes are involved in field outbreaks of inclusion body hepatitis.

Quelle: Vet Microbiol. 2016; 186:13-20

Autor/innen der Vetmeduni Vienna:

Grafl Beatrice
Hess Michael
Marek Ana
Schachner Anna

Beteiligte Vetmed-Organisationseinheiten
Universitätsklinik für Geflügel und Fische, Klinische Abteilung für Geflügelmedizin

Forty-eight fowl aviadenoviruses (FAdVs) isolated from recent IBH outbreaks across Europe were investigated, by utilizing for the first time the two major adenoviral antigenic domains, hexon loop-1 and fiber, for compound molecular characterization of IBH-associated FAdVs. Successful target gene amplification, following virus isolation in cell culture or from FTA-card samples, demonstrated presence of FAdVs in all cases indicative for IBH. Based on hexon loop-1 analysis, 31 European field isolates exhibited highest nucleotide identity (>97.2%) to reference strains FAdV-2 or -11 representing FAdV-D, while 16 and one European isolates shared >96.0% nucleotide identity with FAdV-8a and -8b, or FAdV-7, the prototype strains representing FAdV-E. These results extend recognition of specific FAdV-D and FAdV-E affiliate genotypes as causative agents of IBH to the European continent. In all isolates, species specificity determined by fiber gene analysis correlated with hexon-based typing. A threshold of 72.0% intraspecies nucleotide identity between fibers from investigated prototype and field strains corresponded with demarcation criteria proposed for hexon, suggesting fiber-based analysis as a complementary tool for molecular FAdV typing. A limited number of strains exhibited inconsistencies between hexon and fiber subclustering, indicating potential constraints for single-gene based typing of those FAdVs. Within FAdV-D, field isolate fibers shared a high degree of nucleotide (>96.7%) and aa (>95.8%) identity, while FAdV-E field isolate fibers displayed greater nucleotide divergence of up to 22.6%, resulting in lower aa identities of >81.7%. Furthermore, comparison with FAdVs from IBH outbreaks outside Europe revealed close genetic relationship in the fiber, independent of the strains' geographic origin. Copyright © 2016 Elsevier B.V. All rights reserved.

Keywords Pubmed: Adenoviridae Infectionsepidemiologyimmunologyvirology
Amino Acid Sequence
Capsid Proteinschemistrygenetics
Disease Outbreaks
Hepatitis, Viral, Animalepidemiologyimmunologyvirology
Molecular Sequence Data
Protein Structure, Tertiarygenetics
Sequence Homology, Nucleic Acid
Species Specificity

© Veterinärmedizinische Universität Wien Hilfe und DownloadsErklärung zur Barrierefreiheit