Veterinärmedizinische Universität Wien Forschungsinformationssystem VetDoc

Grafischer Link zur Startseite der Vetmeduni Vienna

Gewählte Publikation:

Publikationstyp: Zeitschriftenaufsatz
Dokumenttyp: Originalarbeit

Jahr: 2013

AutorInnen: Gómez-Casado, C; Roth-Walter, F; Jensen-Jarolim, E; Díaz-Perales, A; Pacios, LF

Titel: Modeling iron-catecholates binding to NGAL protein.

Quelle: J Mol Graph Model. 2013; 45:111-121

Autor/innen der Vetmeduni Vienna:

Jensen-Jarolim Erika
Roth-Walter Franziska

Beteiligte Vetmed-Organisationseinheiten
Messerli Forschungsinstitut, Abteilung für Komparative Medizin

Neutrophil gelatinase associated lipocalin (NGAL) protein is attracting a great interest because of its antibacterial properties played upon modulating iron content in competition against iron acquisition processes developed by pathogenic bacteria that bind selective ferric iron chelators (siderophores). Besides its known high affinity to enterobactin, the most important siderophore, it has been recently shown that NGAL is able to bind Fe(III) coordinated by catechols. The selective binding of Fe(III)-catechol ligands to NGAL is here studied by using iron coordination structures with one, two, and three catecholate ligands. By means of a computational approach that consists of B3LYP/6-311G(d,p) quantum calculations for geometries, electron properties and electrostatic potentials of ligands, protein-ligand flexible docking calculations, analyses of protein-ligand interfaces, and Poisson-Boltzmann electrostatic potentials for proteins, we study the binding of iron catecholate ligands to NGAL as a central member of the lipocalin family of proteins. This approach provides a modeling basis for exploring in silico the selective binding of iron catecholates ligands giving a detailed picture of their interactions in terms of electrostatic effects and a network of hydrogen bonds in the protein binding pocket.

Keywords Pubmed: Ferric Compounds/chemistry
Ferric Compounds/metabolism
Hydrogen Bonding
Models, Molecular*
Molecular Docking Simulation
Molecular Dynamics Simulation
Molecular Structure
Protein Binding
Static Electricity

© Veterinärmedizinische Universität Wien Hilfe und Downloads