Veterinärmedizinische Universität Wien Forschungsinformationssystem VetDoc

Grafischer Link zur Startseite der Vetmeduni Vienna

Gewählte Publikation:

Publikationstyp: Zeitschriftenaufsatz
Dokumenttyp: Originalarbeit

Jahr: 2014

AutorInnen: Fusani, L; Bertolucci, C; Frigato, E; Foà, A

Titel: Cryptochrome expression in the eye of migratory birds depends on their migratory status.

Quelle: J Exp Biol. 2014; 217(Pt 6):918-923



Autor/innen der Vetmeduni Vienna:

Fusani Leonida

Diese Publikation wurde nicht im Namen der Vetmeduni Vienna erstellt und ist deshalb ausschließlich der persönlichen Publikationsliste des/der Autors/Autorin zugeordnet!


Abstract:
Most passerine birds are nocturnal migrants. When kept in captivity during the migratory periods, these species show a migratory restlessness, or Zugunruhe. Recent studies on Sylvia warblers have shown that Zugunruhe is an excellent proxy of migratory disposition. Passerine birds can use the Earth"s geomagnetic field as a compass to keep their course during their migratory flight. Among the candidate magnetoreceptive mechanisms are the cryptochromes, flavoproteins located in the retina that are supposed to perceive the magnetic field through a light-mediated process. Previous work has suggested that expression of Cryptochrome 1 (Cry1) is increased in migratory birds compared with non-migratory species. Here we tested the hypothesis that Cry1 expression depends on migratory status. Blackcaps Sylvia atricapilla were caught before fall migration and held in registration cages. When the birds were showing robust Zugunruhe, we applied a food deprivation protocol that simulates a long migratory flight. When the birds were refed after 2 days, their Zugunruhe decreased substantially, as is expected from birds that would interrupt migration for a refuelling stopover. We found that Cry1 expression was higher at night than during daytime in birds showing Zugunruhe, whereas in birds that underwent the fasting-and-refeeding protocol and reduced their levels of Zugunruhe, night Cry1 expression decreased to daytime levels. Our work shows that Cry1 expression is dependent on the presence of Zugunruhe and not on species-specific or seasonal factors, or on the birds being active versus inactive. These results support the hypothesis that cryptochromes underlie magnetoreceptive mechanisms in birds.

Keywords Pubmed: Animal Migration*
Animals
Avian Proteins/genetics*
Avian Proteins/metabolism
Cryptochromes/genetics*
Cryptochromes/metabolism
Eye/metabolism*
Food Deprivation
Gene Expression Regulation*
Molecular Sequence Data
Periodicity
Seasons
Sequence Analysis, DNA
Songbirds/genetics
Songbirds/physiology*


© Veterinärmedizinische Universität Wien Hilfe und DownloadsErklärung zur Barrierefreiheit