Veterinärmedizinische Universität Wien Forschungsinformationssystem VetDoc

Grafischer Link zur Startseite der Vetmeduni Vienna

Gewählte Publikation:

Open Access Logo

Publikationstyp: Zeitschriftenaufsatz
Dokumenttyp: Originalarbeit

Jahr: 2016

AutorInnen: Kumar, G; Hummel, K; Ahrens, M; Menanteau-Ledouble, S; Welch, TJ; Eisenacher, M; Razzazi-Fazeli, E; El-Matbouli, M

Titel: Shotgun proteomic analysis of Yersinia ruckeri strains under normal and iron-limited conditions.

Quelle: Vet Res. 2016; 47(1):100



Autor/innen der Vetmeduni Vienna:

El-Matbouli Mansour
Hummel Karin
Kumar Gokhlesh
Menanteau-Ledouble Simon
Razzazi-Fazeli Ebrahim

Beteiligte Vetmed-Organisationseinheiten
Universitätsklinik für Geflügel und Fische, Klinische Abteilung für Fischmedizin
VetCore


Zugehörige(s) Projekt(e): Proteomik der Regenbogenforelle als Antwort auf Y. ruckeri


Abstract:
Yersinia ruckeri is the causative agent of enteric redmouth disease of fish that causes significant economic losses, particularly in salmonids. Bacterial pathogens differentially express proteins in the host during the infection process, and under certain environmental conditions. Iron is an essential nutrient for many cellular processes and is involved in host sensing and virulence regulation in many bacteria. Little is known about proteomics expression of Y. ruckeri in response to iron-limited conditions. Here, we present whole cell protein identification and quantification for two motile and two non-motile strains of Y. ruckeri cultured in vitro under iron-sufficient and iron-limited conditions, using a shotgun proteomic approach. Label-free, gel-free quantification was performed using a nanoLC-ESI and high resolution mass spectrometry. SWATH technology was used to distinguish between different strains and their responses to iron limitation. Sixty-one differentially expressed proteins were identified in four Y. ruckeri strains. These proteins were involved in processes including iron ion capture and transport, and enzymatic metabolism. The proteins were confirmed to be differentially expressed at the transcriptional level using quantitative real time PCR. Our study provides the first detailed proteome analysis of Y. ruckeri strains, which contributes to our understanding of virulence mechanisms of Y. ruckeri, and informs development of novel control methods for enteric redmouth disease.

Keywords Pubmed: Animals
Fish Diseasesmicrobiology
Irondeficiency
Proteomics
Real-Time Polymerase Chain Reactionveterinary
Yersinia Infectionsmicrobiologyveterinary
Yersinia ruckerigenetics

© Veterinärmedizinische Universität Wien Hilfe und DownloadsErklärung zur Barrierefreiheit