Veterinärmedizinische Universität Wien Forschungsinformationssystem VetDoc

Grafischer Link zur Startseite der Vetmeduni Vienna

Gewählte Publikation:

Open Access Logo

Publikationstyp: Zeitschriftenaufsatz
Dokumenttyp: Originalarbeit

Jahr: 2019

AutorInnen: de Araujo, ED; Erdogan, F; Neubauer, HA; Meneksedag-Erol, D; Manaswiyoungkul, P; Eram, MS; Seo, HS; Qadree, AK; Israelian, J; Orlova, A; Suske, T; Pham, HTT; Boersma, A; Tangermann, S; Kenner, L; Rülicke, T; Dong, A; Ravichandran, M; Brown, PJ; Audette, GF; Rauscher, S; Dhe-Paganon, S; Moriggl, R; Gunning, PT

Titel: Structural and functional consequences of the STAT5B

Quelle: Nat Commun. 2019; 10(1):2517



Autor/innen der Vetmeduni Vienna:

Boersma Auke
Kenner Lukas
Moriggl Richard
Neubauer Heidi
Orlova Anna
Pham Ha
Rülicke Thomas
Suske Tobias
Tangermann Simone

Beteiligte Vetmed-Organisationseinheiten
Institut für Tierzucht und Genetik, Abteilung für Funktionelle Krebsgenomik
Institut für Pathologie, Abteilung für Labortierpathologie
Institut für In-vivo und In-vitro-Modelle


Abstract:
Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5BN642H, a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5BN642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5BN642H-driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5BN642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5BN642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5BN642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5BN642H, conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5BN642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.

Keywords Pubmed: Animals
Hematologic Neoplasmsgenetics
Humans
Intraepithelial Lymphocytes
Leukemia, T-Cellgenetics
Lymphoma, T-Cellgenetics
Mice
Mice, Transgenic
Molecular Docking Simulation
Mutation
STAT5 Transcription Factorgenetics
src Homology Domains

© Veterinärmedizinische Universität Wien Hilfe und DownloadsErklärung zur Barrierefreiheit