University of Veterinary Medicine Vienna - Research portal

Diagrammed Link to Homepage University of Veterinary Medicine, Vienna

Selected Publication:

Type of publication: Journal Article
Type of document: Full Paper

Year: 2004

Authors: Burger, PA; Steinborn, R; Walzer, C; Petit, T; Mueller, M; Schwarzenberger, F

Title: Analysis of the mitochondrial genome of cheetahs (Acinonyx jubatus) with neurodegenerative disease.

Source: Gene. 2004; 338(1):111-119

Authors Vetmeduni Vienna:

Burger Pamela
Müller Mathias
Schwarzenberger Franz
Steinborn Ralf
Walzer Christian

Vetmed Research Units
Institute for Medical Biochemistry
Institute of Animal Breeding and Genetics
Research Institute of Wildlife Ecology

Project(s): Mutations in the mitochondrial DNA of cheetahs as possible causes for disease predisposition and neurological degenerations

The complete mitochondrial genome of Acinonyx jubatus was sequenced and mitochondrial DNA (mtDNA) regions were screened for polymorphisms as candidates for the cause of a neurodegenerative demyelinating disease affecting captive cheetahs. The mtDNA reference sequences were established on the basis of the complete sequences of two diseased and two nondiseased animals as well as partial sequences of 26 further individuals. The A. jubatus mitochondrial genome is 17,047-bp long and shows a high sequence similarity (91%) to the domestic cat. Based on single nucleotide polymorphisms (SNPs) in the control region (CR) and pedigree information, the 18 myelopathic and 12 non-myelopathic cheetahs included in this study were classified into haplotypes I, II and III. In view of the phenotypic comparability of the neurodegenerative disease observed in cheetahs and human mtDNA-associated diseases, specific coding regions including the tRNAs leucine UUR, lysine, serine UCN, and partial complex I and V sequences were screened. We identified a heteroplasmic and a homoplasmic SNP at codon 507 in the subunit 5 (MTND5) of complex I. The heteroplasmic haplotype I-specific valine to methionine substitution represents a nonconservative amino acid change and was found in 11 myelopathic and eight non-myelopathic cheetahs with levels ranging from 29% to 79%. The homoplasmic conservative amino acid substitution valine to alanine was identified in two myelopathic animals of haplotype II. In addition, a synonymous SNP in the codon 76 of the MTND4L gene was found in the single haplotype III animal. The amino acid exchanges in the MTND5 gene were not associated with the occurrence of neurodegenerative disease in captive cheetahs.

Keywords Pubmed: Acinonyx/genetics*
DNA, Mitochondrial/chemistry
DNA, Mitochondrial/genetics*
Gene Order
Molecular Sequence Data
Neurodegenerative Diseases/genetics*
Neurodegenerative Diseases/pathology
Polymorphism, Single Nucleotide
Sequence Analysis, DNA
Spinal Cord Diseases/genetics
Spinal Cord Diseases/pathology

© University of Veterinary Medicine ViennaHelp and Downloads