University of Veterinary Medicine Vienna - Research portal

Diagrammed Link to Homepage University of Veterinary Medicine, Vienna

Selected Publication:

Open Access Logo

Type of publication: Journal Article
Type of document: Letter

Year: 2012

Authors: Farlow, A; Dolezal, M; Hua, L; Schlötterer, C

Title: The genomic signature of splicing-coupled selection differs between long and short introns.

Source: Mol Biol Evol. 2012; 29(1):21-24

Authors Vetmeduni Vienna:

Dolezal Marlies
Farlow Ashley
Schlötterer Christian

Vetmed Research Units
Institute of Population Genetics

Understanding the function of noncoding regions in the genome, such as introns, is of central importance to evolutionary biology. One approach is to assay for the targets of natural selection. On one hand, the sequence of introns, especially short introns, appears to evolve in an almost neutral manner. Whereas on the other hand, a large proportion of intronic sequence is under selective constraint. This discrepancy is largely dependent on intron length and differences in the methods used to infer selection. We have used a method based on DNA strand asymmetery that does not require comparison with any putatively neutrally evolving sequence, nor sequence conservation between species, to detect selection within introns. The strongest signal we identify is associated with short introns. This signal comes from a family of motifs that could act as cryptic 5" splice sites during mRNA processing, suggesting a mechanistic justification underlying this signal of selection. Together with an analysis of intron length and splice site strength, we observe that the genomic signature of splicing-coupled selection differs between long and short introns.

Keywords Pubmed: Animals
Drosophila melanogaster/genetics
Evolution, Molecular*
Models, Genetic
RNA Splicing
Selection, Genetic

© University of Veterinary Medicine ViennaHelp and DownloadsAccessibility statement