University of Veterinary Medicine Vienna - Research portal

Diagrammed Link to Homepage University of Veterinary Medicine, Vienna

Selected Publication:

Open Access Logo

Type of publication: Journal Article
Type of document: Full Paper

Year: 2014

Authors: Nagl, V; Woechtl, B; Schwartz-Zimmermann, HE; Hennig-Pauka, I; Moll, WD; Adam, G; Berthiller, F

Title: Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs.

Source: Toxicol Lett. 2014; 229(1):190-197

Authors Vetmeduni Vienna:

Hennig-Pauka Isabel
Wöchtl Bettina

Vetmed Research Units
University Clinic for Swine

Plants can metabolize the Fusarium mycotoxin deoxynivalenol (DON) by forming the masked mycotoxin deoxynivalenol-3-β-D-glucoside (D3G). D3G might be cleaved during digestion, thus increasing the total DON burden of an individual. Due to a lack of in vivo data, D3G has not been included in the various regulatory limits established for DON so far. The aim of our study was to contribute to the risk assessment of D3G by determination of its metabolism in pigs. Four piglets received water, D3G (116 μg/kg b.w.) and the equimolar amount of DON (75 μg/kg b.w.) by gavage on day 1, 5 and 9 of the experiment, respectively. Additionally, 15.5 μg D3G/kg b.w. were administered intravenously on day 13. Urine and feces were collected for 24 h and analyzed for DON, D3G, deoxynivalenol-3-glucuronide (DON-3-GlcA), deoxynivalenol-15-GlcA (DON-15-GlcA) and deepoxy-deoxynivalenol (DOM-1) by UHPLC-MS/MS. After oral application of DON and D3G, in total 84.8±9.7% and 40.3±8.5% of the given dose were detected in urine, respectively. The majority of orally administered D3G was excreted in form of DON, DON-15-GlcA, DOM-1 and DON-3-GlcA, while urinary D3G accounted for only 2.6±1.4%. In feces, just trace amounts of metabolites were found. Intravenously administered D3G was almost exclusively excreted in unmetabolized form via urine. Data indicate that D3G is nearly completely hydrolyzed in the intestinal tract of pigs, while the toxin seems to be rather stable after systemic absorption. Compared to DON, the oral bioavailability of D3G and its metabolites seems to be reduced by a factor of up to 2, approximately.

Keywords Pubmed: Administration, Oral
Anorexia/chemically induced
Biological Availability
Chromatography, High Pressure Liquid
Indicators and Reagents
Injections, Intravenous
Intestinal Absorption
Mass Spectrometry
Reproducibility of Results
Vomiting/chemically induced
Weight Loss/drug effects

© University of Veterinary Medicine ViennaHelp and DownloadsAccessibility statement