University of Veterinary Medicine Vienna - Research portal

Diagrammed Link to Homepage University of Veterinary Medicine, Vienna

Selected Publication:

Open Access Logo

Type of publication: Journal Article
Type of document: Full Paper

Year: 2019

Authors: GutiƩrrez, AM; Sotillo, J; Schlosser, S; Hummel, K; Miller, I

Title: Towards Understanding Non-Infectious Growth-Rate Retardation in Growing Pigs.

Source: Proteomes. 2019; 7(3):31



Authors Vetmeduni Vienna:

Hummel Karin
Miller Ingrid
Schlosser Sarah

Vetmed Research Units
Institute for Medical Biochemistry
VetCore


Abstract:
For growth-rate retardation in commercial growing pigs suffering from non-infectious diseases, no biomarker is available for early detection and prevention of the condition or for the diagnosis of affected animals. The point in question is that the underlying pathological pathway of the condition is still unknown and multiple nutritional or management issues could be the cause of the disease. Common health status markers such as acute phase proteins, adenosine deaminase activity or total antioxidant capacity did not show any alteration in the saliva of animals with growth-rate retardation, so other pathways should be affected. The present study investigates saliva samples from animals with the same commercial crossbreed, sex and age, comparing control pigs and pigs with growth-rate retardation. A proteomics approach based on two-dimensional gel electrophoresis including mass spectrometry together with validation experiments was applied for the search of proteins that could help understand disease mechanisms and be used for early disease detection. Two proteins were detected as possible markers of growth-rate retardation, specifically S100A12 and carbonic anhydrase VI. A decrease in innate immune response was confirmed in pigs with growth-rate retardation, however further studies should be necessary to understand the role of the different CA VI proteoforms observed.


© University of Veterinary Medicine ViennaHelp and DownloadsAccessibility statement